In-Fusion® HD EcoDry™ Cloning Kit
User Manual

Cat. Nos. Many
(121416)
I. Introduction

In-Fusion HD EcoDry Cloning Kits are designed for fast and convenient, directional cloning of one or more fragments of DNA into any vector. The cornerstone of In-Fusion Cloning technology is our proprietary In-Fusion Enzyme, which fuses DNA fragments (e.g. PCR-generated inserts and linearized vectors) efficiently and precisely by recognizing 15-bp overlaps at their ends. These 15-bp overlaps can be engineered by designing primers for amplification of the desired sequences. In-Fusion HD EcoDry Kits offer increased cloning efficiency over previous generations of In-Fusion Kits, especially for longer fragments, short oligonucleotides, and multiple fragments. In-Fusion HD EcoDry Kits provide reaction components in a convenient lyophilized format that is stable at room temperature. All of the necessary cloning reaction materials, except the vector and the PCR insert, are supplied in the reaction tube, thereby simplifying reaction setup and reducing the variability between reactions.

- Clone any insert, into any location, within any vector you choose
- Efficiently clone a broad range of fragment sizes
- Clone multiple DNA fragments simultaneously into any vector in a single reaction
- No restriction digestion, phosphatase treatment, or ligation required
- Final constructs are seamless with no extra or unwanted base pairs

The table below is a general outline of the protocol used for the In-Fusion HD EcoDry Cloning Kits. This outline is further illustrated in Figure 1. Please refer to the specified pages for details on performing each step.

Table 1. In-Fusion HD EcoDry Protocol Outline

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select a base vector and identify the insertion site. Linearize the vector by restriction enzyme digestion or inverse PCR and purify.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Design PCR primers for your gene of interest with 15-bp extensions (5’) that are complementary to the ends of the linearized vector.</td>
<td>6–8</td>
</tr>
<tr>
<td>3</td>
<td>Amplify your gene of interest with CloneAmp™ DNA polymerase. Verify on an agarose gel that your target DNA has been amplified and determine the integrity of the PCR product.</td>
<td>8–9</td>
</tr>
<tr>
<td>4</td>
<td>Spin-column purify your PCR product.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Set up your In-Fusion cloning reaction by adding the following to one In-Fusion HD EcoDry pellet:
 X μl Linearized Vector
 X μl Insert
 X μl dH2O to a total reaction volume of 10 μl. Mix well. | 9–10 |
| 6 | Incubate the reaction for 15 min at 37°C, followed by 15 min at 50°C, then place on ice. | |
| 7 | Transform competent cells with 2.5 μl of the reaction mixture from Step 6. | 11 |
In-Fusion® HD EcoDry™ Cloning Kit User Manual

Figure 1. In-Fusion HD EcoDry protocol overview.

*If you obtain PCR product with non-specific background, isolate the target fragment by gel extraction first, then spin-column purify.
II. List of Components

In-Fusion HD EcoDry Cloning Kits are available in 8-, 24-, and 96-reaction sizes. Each kit contains In-Fusion HD EcoDry Mix (in either 8-well strips or 96-well plates), linearized pUC19 Control Vector (50 ng/μl), and 2 kb Control Insert (40 ng/μl).

Store In-Fusion HD EcoDry Mix at room temperature in a desiccator.

Store all other components at –20°C

Please see the table below for more information on the components included in your kit.

Table 2. Lyophilized Kit Format

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Cat. No.</th>
<th>Size</th>
<th>Purification Kit Included</th>
<th>Stellar™ Competent Cells Included</th>
<th>CloneAmp HiFi PCR Premix Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Fusion HD EcoDry Cloning</td>
<td>638912</td>
<td>8 rxns</td>
<td>Spin Columns</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plus</td>
<td>638913</td>
<td>24 rxns</td>
<td>Spin Columns</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>638914</td>
<td>48 rxns</td>
<td>Spin Columns</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>638915</td>
<td>96 rxns</td>
<td>Spin Columns</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

III. Additional Materials Required

The following materials are required but not supplied:

- **Ampicillin** (100 mg/ml stock) or other antibiotic required for plating the In-Fusion reaction
- **LB (Luria-Bertani) medium** (pH 7.0)
- **LB/antibiotic plates**
- **SOC medium**
IV. PCR and Experimental Preparation

A. Preparation of a Linearized Vector by Restriction Digestion

To achieve a successful In-Fusion reaction, you must first generate a linearized vector. The linearized vector can be generated using restriction enzymes (single or double digests) or by PCR.

Due to differences in cutting efficiencies, different restriction enzymes will generate different amounts of background. Generally speaking, two enzymes cut better than any single enzyme. Efficiency of digestion will always be better if the restriction sites are as far apart as possible. In addition, increasing the enzyme digestion time and the digestion reaction volume will reduce the background.

Recommendations for preparation of a linearized vector by restriction enzyme digestion:

1. Incubate your restriction digest as directed by the restriction enzyme supplier. For many enzymes, incubation from 3 hours to overnight can increase linearization and reduce background.

2. After digestion, purify the linearized vector using any available PCR purification kit. We recommend gel purification using the NucleoSpin Gel and PCR Clean-Up kit.

3. [Control] Check the background of your vector by transforming 5–10 ng of the linearized and purified vector into competent cells. If the background is high, continue digesting the vector for a longer time after the addition of more restriction enzyme(s). Incubate 2 hours to overnight. Gel purify the remainder of the vector and transform again.

B. PCR Primer Design

Primer design and quality are critical for the success of the In-Fusion reaction. In-Fusion allows you to join two or more fragments, e.g. vector and insert (or multiple fragments), as long as they share 15 bases of homology at each end. Therefore, In-Fusion PCR primers must be designed in such a way that they generate PCR products containing ends that are homologous to those of the vector (or each other). Figure 2 outlines the guidelines for primer design and Figure 3 gives specific examples of In-Fusion PCR primers.

When designing In-Fusion PCR primers, consider the following:

1. Every In-Fusion primer must have two characteristics: The 5’ end of the primer must contain 15 bases that are homologous to 15 bases at one end of the DNA fragment to which it will be joined (i.e., the vector or another insert). The 3’ end of the primer must contain sequence that is specific to the target gene.

 NOTE: When joining more than 2 fragments (including the linearized vector), we strongly recommend increasing the homologous region to 20 bp. We have found that this modification yields 5- to 7-fold more transformant colonies, while still maintaining high cloning accuracy. This increase in the length of sequence homology is not detrimental to any standard cloning applications. For more details, please read the In-Fusion HD EcoDry Multiple-Insert Cloning Protocol-At-A-Glance.

2. The 3’ portion of each primer should:
 • be gene-specific.
 • be between 18–25 bases in length, and have a GC-content between 40–60%.
 • have a melting temperature (T_m) between 58–65°C. The T_m difference between the forward and reverse primers should be ≤4°C, or you will not get good amplification. Note: The T_m should be calculated based upon the 3’ (gene-specific) end of the primer, and NOT the entire primer. If the calculated T_m is too low, increase the length of the gene-specific portion of the primer until you reach a T_m of between 58–65°C.
 • not contain identical runs of nucleotides. The last five nucleotides at the 3’ end of each primer should contain no more than two guanines (G) or cytosines (C).

3. Avoid complementarity within each primer to prevent hairpin structures, and between primer pairs to avoid primer dimers.
4. You can perform a BLAST search to determine if the 3’ portion of each primer is unique and specific (at www.ncbi.nlm.nih.gov/BLAST/).

5. We provide an online tool that simplifies In-Fusion PCR primer design for standard cloning reactions. Simply provide your vector sequence, the restriction enzyme(s) used to linearize the vector (if that is the chosen method for linearization), and the primer sequence required to amplify your region of interest. (Go to http://www.takarabio.com/US/Products/Cloning_and_Competent_Cells/Selection_Guides/Online_In-Fusion_Tools)

6. We generally use desalted oligonucleotide primers in PCR reactions. However, primer quality can depend on the vendor and varies from lot to lot. If your primer quality is particularly poor (i.e., has many premature termination products), or your primers are longer than 45 nucleotides, they may need to be PAGE purified; however, we usually find this is unnecessary.

Figure 2. Universal primer design for In-Fusion technology. Successful insertion of a PCR fragment requires that the PCR insert shares 15 bases of homology with each end of the linearized vector. This sequence homology is added to the insert through the PCR primers. For vectors with sticky ends, bases complementary to 5' overhangs are included in the primer sequence, but the bases in 3' overhangs are not.

Guidelines for universal primer design
To determine the 15 b homology sequence to be incorporated into each primer, start at the 5’ end of each DNA strand in the linearized vector (*). The region of homology for a particular primer consists of bases that are complementary to the first 15 bases at the 5’ end of a particular DNA strand.

This means that the bases complementary to 5’ overhangs are included in the primer sequence, but the bases in 3’ overhangs are not.

Brackets indicate bases to be included in the 15 b region of homology.
Figure 3. Examples of primers designed for In-Fusion cloning. The above figure shows examples of primers designed with recognition sites for restriction enzymes that generate: 5’ overhangs (Panel A), blunt ends (Panel B), and 3’ overhangs (Panel C). The primer sequences are shown in bold. The Xs represent bases corresponding to the gene or sequence of interest. Additional nucleotides (indicated with a black box) have been added to each primer in order to reconstruct the restriction sites. They are not part of the 15 bases of sequence homology.

C. PCR Amplification of Target Fragment

For most DNA polymerases, 100 pg–1 ng of plasmid DNA is enough to use as a PCR template. However, if you are amplifying from a pool of cDNA, the amount of template DNA required depends on the relative abundance of the target message in your mRNA population. The In-Fusion method is not affected by the presence or absence of A-overhangs, so you can use any thermostable DNA polymerase for amplification, including proofreading enzymes.

For the best results, we recommend using our CloneAmp HiFi PCR Premix (included in this kit, and sold separately as Cat. No. 639298), which provides exceptionally accurate and efficient DNA amplification, due to the high sensitivity, specificity, priming efficiency, and extension efficiency of CloneAmp HiFi Polymerase—which is formulated with a hot start antibody to prevent nonspecific amplification. CloneAmp HiFi PCR Premix also contains dNTPs and optimized buffer, allowing rapid set-up of PCR reactions. The amount of time required for the extension step has been standardized, allowing amplification of large amounts of template DNA that would otherwise be difficult to amplify.

1. Amount of template to use with CloneAmp HiFi PCR Premix (for a 25-μl reaction, with a 5 sec/kb extension time for genomic DNA, λ DNA, and plasmid DNA templates, or a 5–10 sec/kb extension time for cDNA templates)

- Human genomic DNA 5 ng–100 ng
- E. coli genomic DNA 100 pg–100 ng
- λ DNA 10 pg–100 ng
- Plasmid DNA 10 pg–1 ng
- cDNA ≤ the equivalent of 25–125 ng total RNA
2. **PCR product sizes that can be obtained with CloneAmp HiFi PCR Premix** (with a 5 sec/kb extension time for genomic DNA and λ DNA templates, or a 5–10 sec/kb extension time for cDNA templates)
 - Human genomic DNA up to 6 kb
 - *E. coli* genomic DNA up to 10 kb
 - cDNA up to 6 kb
 - λ DNA up to 15 kb

3. **Analysis of PCR products**: When PCR cycling is complete, use an agarose gel to confirm that you have obtained a single DNA fragment and to estimate the concentration of your PCR product. Quantify the amount of DNA by measuring against a known standard or DNA mass ladder run on the same gel.

D. Control Reactions

When using the In-Fusion kit for the first time, we strongly recommend that you perform the positive and negative control reactions in parallel with your In-Fusion cloning reaction. The positive control should consist of a circular vector of known concentration (competent cells should give >2 x 10^8 cfu/μg), and the negative control should consist of a known amount of your linearized vector (see Section VII for Expected Results). Performing the control reactions will verify that the system is working properly. The 2-kb Control Insert included in the In-Fusion HD EcoDry Cloning Kits has already been purified, so there is no need for further treatment prior to the cloning reaction.

V. Protocol: In-Fusion Cloning Procedure

A. Procedure for Spin-Column Purification of PCR Fragments

1. If non-specific background bands are observed on an agarose gel, isolate your target fragment by gel extraction, then spin-column purify.
2. Spin-column purify your PCR product (e.g., insert) by using a silica-based purification system, such as the NucleoSpin Gel and PCR Clean-Up kit. During purification, avoid nuclease contamination and exposure of the DNA to UV light for long periods of time.

B. In-Fusion Cloning Procedure

In general, good cloning efficiency is achieved when using 50–200 ng of vector and inserts respectively, regardless of their lengths. More is not better. If the size of the PCR fragment is shorter than 0.5 kb, maximum cloning efficiency may be achieved by using less than 50 ng of fragment.

<table>
<thead>
<tr>
<th>Rxn Component</th>
<th>Cloning Rxn</th>
<th>Negative Control Rxn</th>
<th>Positive Control Rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified PCR fragment</td>
<td>10–200 ng*</td>
<td>–</td>
<td>2 μl of 2 kb control insert</td>
</tr>
<tr>
<td>Linearized vector</td>
<td>50–200 ng**</td>
<td>1 μl</td>
<td>1 μl of pUC19 control vector</td>
</tr>
<tr>
<td>Deionized Water</td>
<td>to 10 μl</td>
<td>to 10 μl</td>
<td>to 10 μl</td>
</tr>
</tbody>
</table>

*<0.5 kb: 10–50 ng, 0.5 to 10 kb: 50–100 ng, >10 kb: 50–200 ng

**<10 kb: 50–100 ng, >10 kb: 50–200 ng
In general, for optimal results under standard conditions use an insert to vector ratio of 2:1. Molar ratio recommendations for specific cloning applications are listed below.

- When performing a cloning reaction with more than two fragments (including the linearized vector), the molar ratio of each of the multiple inserts should be 2:1 with regards to the linearized vector, i.e., two moles of each insert for each mole of linearized vector. The molar ratio of two inserts with one vector should be 2:2:1. For more details, please read the In-Fusion HD EcoDry Multiple-Insert Cloning Protocol-At-A-Glance.
- If your purified PCR insert is large with respect to your linearized vector, we recommend a molar ratio of 1:1.
- For cloning of small DNA fragments (between 150 bp and 350 bp), the suggested insert to vector molar ratio is 3–5:1
- For cloning of short synthetic oligos (between 50 bp and 150 bp), the suggested oligo to vector molar ratio is 5–15:1. Depending on the oligo length, the optimal molar ratio must be determined empirically.

For more detailed guidelines on molar ratios please see the Tips tab in the FAQs.

1. Mix your purified PCR fragment and linearized vector together in 10 μl of deionized H2O.
2. Set up the In-Fusion cloning reaction(s):
 a. Peel back the aluminum seal(s) from the tube(s) you plan on using and take care to avoid disturbing the seals of the remaining tubes.
 b. Add the 10 μl volume from Step 1 to each In-Fusion HD EcoDry pellet. Mix well by pipetting up and down.
3. Incubate the reaction for 15 min at 37 °C, followed by 15 min at 50°C, then place on ice.

 NOTE: The In-Fusion reaction is completed within the required 15-min incubation. Longer incubation times do NOT increase cloning efficiency, even with multiple-insert cloning reactions.

4. Continue to the Transformation Procedure (Section VI). If you cannot transform cells immediately, store the cloning reaction(s) at −20°C until you are ready.
VI. Transformation Procedure

Procedure for Transformation Using Stellar Competent Cells

The following protocol has been optimized for transformation using Stellar Competent Cells, sold in In-Fusion HD Plus kits and separately in several formats. If you are not using Stellar Competent Cells, follow the transformation protocol provided with your cells, but you may need to dilute the In-Fusion reaction mixture prior to transformation to increase cloning efficiency (See Table 5, Troubleshooting Guide). We strongly recommend the use of competent cells with a transformation efficiency ≥ 1 x 10⁸ cfu/ug.

For complete information on the handling of Stellar Competent Cells, please see the Protocol.

1. Thaw Stellar Competent Cells on ice just before use. After thawing, mix gently to ensure even distribution, and then move 50 µl of competent cells into a 14-ml round-bottom tube (Falcon tube). Do not vortex.

2. Add 2.5 µl of the In-Fusion reaction mixture to the competent cells.

 IMPORTANT: DO NOT add more than 5 µl of the reaction to 50 µl of competent cells. MORE IS NOT BETTER. Using too much of the reaction mixture inhibits the transformation.

3. Place the tubes on ice for 30 min.
4. Heat shock the cells for exactly 45 sec at 42°C.
5. Place tubes on ice for 1–2 min.
6. Add SOC medium to bring the final volume to 500 µl. SOC medium should be warmed to 37°C before using.
7. Incubate by shaking (160–225 rpm) for 1 hr at 37°C.
8. Place 1/100–1/5 of each transformation reaction into separate tubes and bring the volume to 100 µl with SOC medium. Spread each diluted transformation reaction on a separate LB plate containing an antibiotic appropriate for the cloning vector (i.e., the control vector included with the kit requires 100 µg/ml of ampicillin).

 NOTE: For cloning reactions with more than two fragments, we recommend plating a larger volume (1/5–1/3 of each transformation reaction).

9. Centrifuge the remainder of each transformation reaction at 6,000 rpm for 5 min. Discard the supernatant and resuspend each pellet in 100 µl fresh SOC medium. Spread each sample on a separate LB plate containing the appropriate antibiotic. Incubate all of the plates overnight at 37°C.
10. The next day, pick individual isolated colonies from each experimental plate. Isolate plasmid DNA using a standard method of your choice (e.g., miniprep). To determine the presence of an insert, analyze the DNA by restriction digestion or PCR screening.

VII. Expected Results

The positive control plates typically develop several hundred white colonies when using cells with a minimum transformation efficiency of 1 x 10⁸ cfu/µg. The negative control plates should have few colonies.

The number of colonies on your experimental plates will depend on the amount and purity of the PCR product and linearized vector used for the In-Fusion cloning reaction.

- The presence of a low number of colonies on both plates—typically, a few dozen colonies—is indicative of either transformation with too much of the reaction, or poor DNA/primer quality.
- The presence of many (hundreds) of colonies on the negative control is indicative of incomplete vector linearization.
VIII. Troubleshooting Guide

If you do not obtain the expected results, use the following guide to troubleshoot your experiment. To confirm that your kit is working properly, perform the control reactions.

NOTE: Many troubleshooting topics are covered in our online In-Fusion Cloning FAQs and Tips.

Table 4. Troubleshooting Guide for In-Fusion Experiments

<table>
<thead>
<tr>
<th>Description of Problem</th>
<th>Possible Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No or Few Colonies Obtained from Transformation</td>
<td>Transformed with too much In-Fusion reaction</td>
<td>Do not add more than 5 μl of the In-Fusion reaction to 50 μl of competent cells (see Section VIII for details).</td>
</tr>
<tr>
<td></td>
<td>Competent cells are sensitive to the In-Fusion enzyme</td>
<td>If your cloning efficiency is low, you may obtain better results if you dilute the reaction. For some cell strains, it may be better to dilute the In-Fusion reaction with TE buffer 5–10 times prior to transformation (add 40–90 μl of TE buffer to 10 μl of In-Fusion reaction).</td>
</tr>
<tr>
<td></td>
<td>Bacteria were not competent</td>
<td>Check transformation efficiency. You should obtain ≥1 x 10^8 cfu/μg; otherwise use fresh competent cells.</td>
</tr>
<tr>
<td></td>
<td>Regions of homology were not long enough for efficient cloning of >2 fragments at once</td>
<td>Increase homologous region of primers from 15 bp to 20 bp.</td>
</tr>
<tr>
<td></td>
<td>Low DNA concentration in reaction</td>
<td>It is imperative to obtain the highest DNA concentration possible in your In-Fusion reaction. Either the amount of vector or the amount of PCR fragment was too low. We recommend using between 50 ng and 200 ng of vector, depending on its size (see Table 3).</td>
</tr>
<tr>
<td></td>
<td>Gel purification introduced contaminants</td>
<td>If your fragment was gel purified, it is imperative to obtain the highest DNA concentration possible in your In-Fusion reaction. The total volume of purified vector and insert should not exceed 5 μl. If possible, optimize your PCR amplification reactions such that you generate pure PCR products and perform a PCR cleanup instead.</td>
</tr>
<tr>
<td></td>
<td>Suboptimal PCR product</td>
<td>Repeat PCR amplification and purify product using a different method of purification. Alternatively, perform phenol:chloroform extraction on your original PCR product, followed by ethanol precipitation.</td>
</tr>
<tr>
<td></td>
<td>Primer sequences are incorrect</td>
<td>Check primer sequences to ensure that they provide 15 bases of homology with the region flanking the insertion site (see Section IV.C).</td>
</tr>
</tbody>
</table>
B. Large Numbers of Colonies Contained No Insert

<table>
<thead>
<tr>
<th>Description of Problem</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large numbers of colonies obtained with no insert</td>
<td>Incomplete linearization of your vector</td>
<td>It is important to remove any uncut vector prior to use in the In-Fusion reaction. If necessary, recut your vector and gel purify.</td>
</tr>
<tr>
<td></td>
<td>Contamination of In-Fusion reaction by plasmid with same antibiotic resistance</td>
<td>If your insert was amplified from a plasmid, closed circular DNA may have carried through purification and contaminated the cloning reaction: To ensure the removal of any plasmid contamination, we recommend linearizing the template DNA before performing PCR. If you spin-column purify your insert, treating the PCR product with DpnI before purification will help to remove contaminating template DNA.</td>
</tr>
<tr>
<td></td>
<td>Plates too old or contained incorrect antibiotic</td>
<td>Be sure that your antibiotic plates are fresh (<1 month old). Check the antibiotic resistance of your fragment.</td>
</tr>
</tbody>
</table>

C. Clones Contained Incorrect Insert

<table>
<thead>
<tr>
<th>Description of Problem</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large number of colonies contain incorrect insert</td>
<td>Your PCR product contained non-specific sequences</td>
<td>If your PCR product is not a single distinct band, then it may be necessary to gel purify the PCR product to ensure cloning of the correct insert. See Section V for more information.</td>
</tr>
</tbody>
</table>
Appendix A. pUC19 Linearized Vector Information

Figure 4. pUC19 Linearized Vector map and multiple cloning sites (MCS). pUC19 is a commonly used, high copy number cloning vector. This linearized version was generated by PCR, and contains the blunt ends shown in the MCS sequence above. The vector encodes the N-terminal fragment of β-galactosidase (lacZα), which allows for blue/white colony screening (i.e., α-complementation), as well as a pUC origin of replication and an ampicillin resistance gene that allow propagation and selection in *E. coli*.

<table>
<thead>
<tr>
<th>EcoRI</th>
<th>SalI</th>
<th>SacI</th>
<th>KpnI</th>
<th>XmaI</th>
<th>Smal</th>
<th>HindIII</th>
<th>SphI</th>
<th>NotI</th>
<th>PstI</th>
<th>HincII</th>
<th>XbaI</th>
<th>BamHI</th>
<th>Accl</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAATTCGAGC</td>
<td>TGGTGACCCG</td>
<td>GGGATCC</td>
<td>CTTAAGCTGC</td>
<td>AGCCATGGCG</td>
<td>CCCTAG</td>
<td>GATCCCTCT</td>
<td>AGAATGCGAC</td>
<td>TGGAGGCGATG</td>
<td>GAAGCTTGG</td>
<td>CTTAGAAG</td>
<td>TCTAGAAGCTG</td>
<td>ACGTCCGTAC</td>
<td>GTTCGAGCC</td>
</tr>
</tbody>
</table>

Notice to Purchaser

Our products are to be used for research purposes only. They may not be used for any other purpose, including, but not limited to, use in drugs, *in vitro* diagnostic purposes, therapeutics, or in humans. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without prior written approval of Takara Bio USA, Inc.

Your use of this product is also subject to compliance with any applicable licensing requirements described on the product’s web page at takarabio.com. It is your responsibility to review, understand and adhere to any restrictions imposed by such statements.

©2016 Takara Bio Inc. All Rights Reserved.

All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

This document has been reviewed and approved by the Quality Department.