login | register | order now | view cart | feedback

Support >  Events >  SLAS_2018

Protein purifcation, gene editing, stem cell research, qPCR

Society for Laboratory Automation and Screening (SLAS) 2018 conference

Please fill out the form to get your copies of our presentations.

Expertise in automated, high-throughput qPCR, stem cell and gene editing solutions, and protein purification

The SLAS community promotes the synthesis of new technologies, partnerships, and ideas that advance laboratory workflows. The SLAS2018 conference, which took place on February 3–7 in San Diego, CA, is an essential hub for a community of experts who are forging ahead to apply state-of-the-art technologies to find solutions for significant biological challenges in an interdisciplinary manner.

Adding to the body of expertise at SLAS2018, Takara Bio offered attendees expert guidance, technologies, and services for advancing their qPCR, stem cell, gene editing, and protein discovery research. Our instruments, such as the SmartChip Real‑Time PCR System, and our Cellartis, Guide-it, and Capturem product portfolios provide researchers with novel screening tools that bring unparalleled consistency to automation and screening efforts.

We are excited to help you find the best solutions for your research! Learn about our featured products and services, and download our exhibitor tutorial slides and posters by filling out the form to the right.

Exhibitor tutorials at SLAS2018

To download copies of these tutorials, please fill out the form to the right.

Flexible, high-throughput qPCR for gene expression and genotyping analysis using the SmartChip Real‑Time PCR System

In this Exhibitor Tutorial, we will present multiple gene-expression and genotyping studies that demonstrate the reliability and flexibility of the SmartChip Real‑Time PCR System. This quantitative PCR platform combines the high-throughput nature of microarrays with the sensitivity, precision, and dynamic range of quantitative real-time PCR. The power of the SmartChip system is derived from the 5,184 individual nanowells included in each chip provided in the SmartChip MyDesign Kit. The chips can be configured with 14 different assay and sample arrangements, allowing you to run the experiments you want instead of limiting them to rigid sample and assay formats. The SmartChip system utilizes 100-nl reactions with only 3–10 ng/µl of input required per reaction, which provides 1) the sensitivity needed to eliminate the preamplification step and 2) significant reagent and cost savings over 25‑µl reactions in 384‑well plates. With the SmartChip system, you can seamlessly switch between dispensing assay reagents and samples into blank chips and dispensing samples into custom, preprinted chips—without the need for revalidation. Run experiments the way you want, while delivering the accurate and consistent results you expect.

If you’d like to learn more, request a copy of the technical brochure.

Innovative CRISPR/Cas9 gene knockin and SNP-detection tools for establishing human iPS-derived disease model lines for drug screening

The unique combination of precise, footprint-free editing using CRISPR/Cas9 and human induced pluripotent stem (hiPS) cells allows for a new level of sophistication in generating disease models which allow for rapid advancement in the development of new therapeutics. While CRISPR/Cas9-based gene editing is an effective technique to obtain knockout mutations with high efficiency, knocking in longer genes or sequences (>200 bp) via homology directed repair (HDR) is difficult to complete successfully. Therefore, more sophisticated screening tools are required for low-efficiency knockins that can easily identify the edited clonal cell lines containing the engineered sequence.

One of the most powerful applications of genome editing is the introduction of base changes in specific genomic sites that mimic single-nucleotide polymorphisms (SNPs) related to human diseases or introducing stop codons to generate gene knockouts. However, screening large number of clones to identify edited clonal cell lines containing the engineered base-of-interest is still a bottleneck, especially in the absence of a phenotypic readout.

To address this need, we developed a simple, high-throughput SNP-detection method that allows for rapid screening of clones from 96‑well plates and detection of edited clonal cell lines independent of the engineered nucleotide substitution and the surrounding targeted genomic loci. As a proof-of-concept, we applied this method to successfully detect all the possible transitions in several human gene loci using genomic DNA as template or directly in cultured human fibroblasts. This screening method was then successfully used to screen hiPSCs clonal cell lines for SNPs related to tyrosinemia that were generated using CRISPR/Cas9.

Poster presentations at SLAS2018

To download copies of these posters, please fill out the form to the right.
SLAS2018 track: Cellular Technologies
Poster number: 1250-E

A novel maintenance medium extends the lifespan and enables long-term applications for both human primary hepatocytes and human pluripotent stem cell-derived hepatocytes in conventional 2D cultures

Human primary hepatocytes are considered the gold standard for in vitro model systems of liver function for drug development, toxicity assessment, and metabolic disease research; however, their rapid loss of cell viability in conventional 2D culture limits their utility in these applications. Human induced pluripotent stem (hiPS) cell-derived hepatocytes have potential as a better in vitro model if they possess a relevant usage window and functionality—but this is challenging to accomplish.

Addressing these problems, our newly developed hepatocyte maintenance medium enables the culture of cryopreserved human primary hepatocytes or hiPS cell-derived hepatocytes for four or two weeks, respectively, with maintained viability and stable activities of several key cytochrome P450 enzymes (CYPs). Multiple analyses on cryopreserved hiPS cell-derived hepatocytes, including RT-qPCR, immunostainings, functional assays such as albumin secretion, and CYP activity assays demonstrate mature features and high functionality. Importantly, the hiPS cell-derived hepatocytes show expression of the essential genes of the drug-metabolizing machinery, such as CYPs, phase II enzymes, and transporters.

An extended in vitro culture time for hepatocytes enables chronic toxicity testing. We show that hiPS cell-derived hepatocytes can be exposed to known hepatotoxins for up to 14 days. Cells respond as expected to these toxic compounds, demonstrating their utility for chronic toxicity studies. The hiPS cell-derived hepatocytes also respond to insulin, and they can take up and store low-density lipoproteins and fatty acids.

The novel maintenance medium presented here maintains the viability and functionality of cryopreserved human primary hepatocytes and hiPS cell-derived hepatocytes from multiple lines for a much longer time than existing commercially available hepatocyte maintenance media. We hope that the increased assay window of functional hepatocytes in 2D cultures will empower new areas of liver research and applications.

SLAS2018 track: Assay Development and Screening
Poster number: 1163-D

A fast and reliable method for detecting base editing in clonal cell lines

One of the most powerful applications of genome editing is the introduction of base changes in specific genomic sites to mimic single-nucleotide polymorphisms (SNPs) related to human diseases or introducing stop codons to generate precise gene knockouts. However, screening a large number of clones to identify edited clonal cell lines containing the engineered base of interest is still a bottleneck, especially if no phenotypic readout is applicable. Sanger sequencing is a potential approach to detect SNPs, but it is not easy to apply in a high-throughput manner; next-generation sequencing, in contrast, allows researchers to screen 96-well plates but at a far higher cost.

To address this need, we developed a simple SNP detection method that allows for rapid screening of clones from 96-well plates. Our assay comprises PCR amplification of the target site, followed by an enzymatic assay and a fluorescence-based readout using a standard plate reader. No additional special instrumentation is required. The overall workflow takes approximately four hours and any positive fluorescent signal is highly correlated with the successful introduction of the desired SNP. This method allows for the detection of edited clonal cell lines independent of the engineered nucleotide substitution and the surrounding targeted genomic loci. As a proof of concept, we have applied this method to successfully detect all possible transitions in several human loci using genomic DNA as template. As a final test, several nucleotide exchanges have been detected directly in cultured human fibroblasts.

Featured products and services at SLAS2018

SmartChip Real-Time PCR System

Flexible, high-throughput qPCR for gene expression and genotyping analyses

The SmartChip Real‑Time PCR System is a complete system that enables high-throughput, high-density, real-time PCR for gene expression or single nucleotide polymorphism (SNP) genotyping analyses. The system includes the SmartChip MultiSample NanoDispenser and the SmartChip Real‑Time PCR Cycler. Used in conjunction with the SmartChip MyDesign Kit, the system can increase your throughput levels and save reagents and your precious samples without compromising data quality.

Learn more

Human primary hepatocytes grown in Cellartis Power Primary HEP Medium

Cellartis Power Primary HEP Medium for long-term human primary hepatocyte culture

A significant limitation of human primary hepatocyte cultures is their rapid loss of function in vitro. To enable long-term 2D culture, we developed a novel medium that maintains healthy, functional human primary hepatocytes for up to four weeks, without the need for overlays or sandwich cultures. Furthermore, the recommended culture schedule requires media changes only on Mondays, Wednesdays, and Fridays, freeing up your weekends!

Learn more

GFP-tagged actin human iPS cells in DEF-CS

Footprint-free editing of human iPS cells

Despite the power and utility of CRISPR/Cas9 as an editing tool, some challenges must be overcome, particularly when editing hiPS cells. Delivery of Cas9 and the target-specific sgRNA requires an efficient method with low toxicity. Once edited, single cells with the desired mutation need to be expanded clonally. Throughout all stages of editing and single-cell-expansion experiments, hiPS cells need to be highly proliferative and pluripotent. To overcome these challenges, we developed the Cellartis iPSC CRISPR/Cas9 Gesicle and Single-Cell Cloning System. This kit utilizes the DEF‑CS culture system, recognized for its suitability for genome engineering and single-cell cloning, to promote the reliable growth of edited hiPS cells in a feeder-free and defined environment.

Learn more

Cellartis beta cells positive for C-peptide/MAFA

Beta cells for modeling diabetes and metabolic disorders

The Cellartis hiPS Beta Cells (from ChiPSC12) Kit is a complete kit for investigating beta-cell function, modeling diabetes and pancreatic disorders, and screening compounds that regulate insulin expression and secretion. The kit contains beta cells frozen in a single-cell suspension along with media, supplements, and coating matrix. The beta cells were generated in vitro from the human iPS cell line ChiPSC12 using a standardized protocol that mimics embryonic development. The cells express insulin, C-peptide, MAFA, NKX6.1, PDX1, and UCN3 mRNA and protein, and they also secrete insulin and C-peptide in response to incretin stimulation. This makes them ideal for obtaining consistent results from drug screening studies.

Learn more

Protein purification products

A revolutionary solution for recombinant protein and antibody purification

Recombinant protein production is an important part of many studies in nearly all research settings, from academic institutions to biopharmaceutical and agricultural industries. Having the right tools to produce and purify tagged proteins or antibodies can make a big difference in the ability to efficiently obtain meaningful data and make the most of every experiment. While conventional methods require a lot of time and effort, Capturem purification kits mark the beginning of a protein purification revolution. By uniting speed, ease of use, and high capacity in one powerful system, protein and antibody work can move forward as never before.

Learn more

Changing media in cell culture flask

Cellartis Human Pluripotent Stem Cell Services

With Cellartis services, you can focus on your areas of expertise and leave the challenges to us. Our scientists have over 15 years’ experience with human pluripotent stem cell culture and differentiation, so you can be confident that we will deliver custom services to expand and enhance the stem cell capabilities and success of your research team. Custom services include clinical-grade hES cell line derivation, sourcing, reprogramming, banking, and directed differentiation. Expect a close, worry-free collaboration with straightforward and prompt communication about timelines and deliverables.

Learn more

Download PDF >>

Top of page

Takara Bio USA is a Takara Bio Company © 2018 Privacy Policy | Terms & Conditions | Terms of Use